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In the history of probability, the sixteen–century 
physician and mathematician Gerolamo Cardano 
(1501–1575) was among the first to attempt a 

systematic study of the calculus of probabilities. Like 
those of his contemporaries, Cardano’s studies were 
primarily driven by games of chance. Concerning his 
gambling for twenty–five years, he famously said in his 
autobiography entitled The Book of My Life:

… and I do not mean to say only from time to 
time during those years, but I am ashamed to 
say it, everyday.
Cardano’s works on probability were published post-

humously in the famous 15–page Liber de Ludo Aleae (The 
Book on Games of Chance) consisting of 32 small chapters. 
Today, the field of probability of widely believed to have 
been fathered by Blaise Pascal (1623–1662) and Pierre 
de Fermat (1601–1665), whose famous correspondence 
took place almost a century after Cardano’s works. It 
could appear to many that Cardano has not got the rec-
ognition that he perhaps deserves for his contributions 
to the field of probability, for in the Liber de Ludo Aleae 
and elsewhere he touched on many rules and problems 
that were later to become classics. 

Cardano’s contributions have led some to consider 
Cardano as the real father of probability. Thus we read 
in mathematician Oystein Ore’s biography of Cardano, 
titled Cardano: The Gambling Scholar:

… I have gained the conviction that this pioneer 
work on probability is so extensive and in certain 
questions so successful that it would seem much 
more just to date the beginnings of probability 
theory from Cardano’s treatise rather than the 
customary reckoning from Pascal’s discussions 
with his gambling friend de Méré and the ensu-
ing correspondence with Fermat, all of which 
took place at least a century after Cardano began 
composing his De Ludo Aleae. 
The mathematical historian David Burton seemed 

to share the same opinion, for he said:
For the first time, we find a transition from 
empiricism to the theoretical concept of a fair 
die. In making it, Cardan [Cardano] probably 

became the real father of modern probability 
theory.
However, in spite of Cardano’s several contributions 

to the field, in none of the problems did Cardano reach 
the level of mathematical sophistication and maturity 
that was later to be evidenced in the hands of his suc-
cessors. Many of his investigations were either too 
rudimentary or just erroneous. On the other hand, Pas-
cal’s and Fermat’s work were rigorous and provided the 
first impetus for a systematic study of the mathematical 
theory of probability. In the words of A.W.F. Edwards:

… in spite of our increased awareness of the 
earlier work of Cardano (Ore, 1953) and Galileo 
(David, 1962) it is clear that before Pascal and 
Fermat no more had been achieved than the 
enumeration of the fundamental probability set 
in various games with dice or cards.

Moreover, from the De Ludo Aleae (the full English 
version of this book can be found in Ore’s biography 
of Cardano) it is clear that Cardano is unable to dis-

Cardano’s early years were marked by illness and 
mistreatment. He was encouraged to study mathematics and 
astrology by his father and, in 1526, obtained his doctorate 
in medicine. Eight years later, he became a mathematics 
teacher, while still practicing medicine. Cardano’s first book 
in mathematics was the Practica arithmetice. In his greatest 
math work, Ars Magna (The Great Art), Cardano gave 
the general solution of a “reduced” cubic equation (i.e., 
a cubic equation with no second-degree term), and also 
provided methods to convert the general cubic equation to 
the reduced one. These results had been communicated to 
him previously by the mathematician Niccolò Tartaglia of 
Brescia (1499–1557) after swearing that he would never 
disclose the results. A bitter dispute thereby ensued between 
Cardano and Tartaglia, and is nicely documented in 
Hellman’s Great Feuds in Mathematics. Cardano’s passion 
for gambling motivated him to write the Liber de ludo aleae, 
which he completed in his old age and was published 
posthumously.

GEROLAMO CARDANO (1501–1575) 
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associate the unscientific concept of luck from the 
mathematical concept of chance. He identifies luck with 
some supernatural force, which he calls the “authority 
of the Prince.” In Chapter 20, titled “On Luck in Play,” 
Cardano states:

In these matters, luck seems to play a very great 
role, so that some meet with unexpected success 
while others fail in what they might expect ...

If anyone should throw with an outcome tending 
more in one direction than it should and less in 
another, or else it is always just equal to what it 
should be, then, in the case of a fair game there 
will be a reason and a basis for it, and it is not 
the play of chance; but if there are diverse results 
at every placing of the wagers, then some other 
factor is present to a greater or less extent; there 
is no rational knowledge of luck to be found in 
this, though it is necessarily luck. 
Cardano thus believes that there is some external 

force that is responsible for the fluctuations of outcomes 
from their expectations. He fails to recognize such 
fluctuations are germane to chance and not because of 
the workings of supernatural forces. In their book The 
Empire of Chance: How Probability Changed Science and 
Everyday Life, Gigerenzer et al. thus wrote:

… He [Cardano] thus relinquished his claim to 
founding the mathematical theory of probabil-
ity. Classical probability arrived when luck was 
banished; it required a climate of determinism so 
thorough as to embrace even variable events as 
expressions of stable underlying probabilities, at 
least in the long run.
We now outline some of the rules and problems that 

Cardano touched on and which were later to be more 
fully investigated by his more sophisticated successors.

Definition of Classical 
(Mathematical) Probability 
In Chapter 14 of the De Ludo Aleae, Cardano gives what 
some would consider the first definition of classical (or 
mathematical) probability: 

So there is one general rule, namely, that we 
should consider the whole circuit, and the num-
ber of those casts which represents in how many 
ways the favorable result can occur, and compare 
that number to the rest of the circuit, and accord-
ing to that proportion should the mutual wagers 
be laid so that one may contend on equal terms.

Cardano thus calls the “circuit” what is known as the 
sample space today (i.e., the set of all possible outcomes 
when an experiment is performed). If the sample space is 
made up of r outcomes which are favorable to an event, 
and s outcomes which are unfavorable, and if all out-
comes are equally likely, then Cardano correctly defines 
the odds of the event by r/s. This corresponds to a prob-
ability of r/(r + s). Compare Cardano’s definition to:

•	 The definition given by Gottfried Wil-
helm Leibniz (1646–1716) in 1710:  
If a situation can lead to different advanta-
geous results ruling out each other, the esti-
mation of the expectation will be the sum of 
the possible advantages for the set of all these 
results, divided into the total number of results. 

Figure 1. Gerolamo Cardano (1501–1575) (taken from 
http://commons.wikimedia.org/wiki/File:Gerolamo_
Cardano.jpg)

Figure 2. First page of the Liber de Ludo Aleae, taken from 
the Opera Omnia (Vol. I)
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•	 Jacob Bernoulli’s (1654–1705) statement from 
his 1713 probability opus Ars Conjectandi:  
… if the integral and absolute certainty, which 
we designate by letter α or by unity 1, will be 
thought to consist, for example, of five prob-
abilities, as though of five parts, three of which 
favor the existence or realization of some 
events, with the other ones, however, being 
against it, we will say that this event has 3/5α, 
or 3/5, of certainty. 

•	 Abraham de Moivre’s (1667–1754) defi-
nition from the 1711 De Mensura Sortis:  
If p is the number of chances by which a cer-
tain event may happen, and q is the number of 
chances by which it may fail, the happenings 
as much as the failings have their degree of 
probability; but if all the chances by which the 
event may happen or fail were equally easy, the 
probability of happening will be to the prob-
ability of failing as p to q.

•	 The definition given in 1774 by Pierre–
Simon Laplace (1749–1827), with 
whom the formal definition of classi-
cal probability is usually associated. In 
his first probability paper, Laplace states:  
The probability of an event is the ratio of the 
number of cases favorable to it, to the number 
of possible cases, when there is nothing to 
make us believe that one case should occur 
rather than any other, so that these cases are, 
for us, equally possible.

However, although the first four definitions (starting 
from Cardano’s) all anteceded Laplace’s, it is with the 
latter that the classical definition was fully appreciated 
and began to be formally used. 

Multiplication Rule for the 
Independence of Events 
One of Cardano’s other important contributions to the 
theory of probability is “Cardano’s formula.” Suppose 
an experiment consists of t equally likely outcomes of 
which r are favorable to an event. Then the odds in favor 
of the event in one trial of the experiment is r/(t–r). 
Cardano’s formula then states that, in n independent and 
identical trials of the experiment, the event will occur 
n times with odds rn/(tn–rn). This is the same as saying 
that, if an event has probability p (=r/t) of occurring in 
one trial of an experiment, then the probability that it 
will occur in all of n independent and identical trials of 
the experiment is pn. While this is an elementary result 
nowadays, Cardano had some difficulty establishing it. 
At first he thought it was the odds that ought to be mul-
tiplied. Cardano calculated the odds against obtaining 
at least one 1 appearing in a toss of three dice as 125 to 
91. Cardano then proceeded to obtain the odds against 
obtaining at least one 1 in two tosses of three dice as 
(125/91)2 ≈ 2. Thus, on the last paragraph of Chapter 
14 of the De Ludo Aleae, Cardano writes:

Thus, if it is necessary for someone that he should 
throw an ace twice, then you know that the 
throws favorable for it are 91 in number, and the 
remainder is 125; so we multiply each of these 
numbers by itself and get 8,281 and 15,625, and 
the odds are about 2 to 1. Thus, if he should 
wager double, he will contend under an unfair 
condition, although in the opinion of some the 
condition of the one offering double stakes would 
be better.
However, in the very next chapter, titled “On an 

Error Which Is Made About This,” Cardano realizes 
that it is not the odds that must be multiplied. He comes 
to understand this by considering an event with odds 
1:1 in one trial of an experiment. His multiplication rule 
for the odds would still give an odds of (1/1)3 = 1:1 for 
three trials of the experiment, which is clearly wrong. 
Cardano thus writes:

But this reasoning seems to be false, even in the 
case of equality, as, for example, the chance of 
getting one of any three chosen faces in one cast 
of one die is equal to the chance of getting one 
of the other three, but according to this reasoning 
there would be an even chance of getting a cho-
sen face each time in two casts, and thus in three, 
and four, which is most absurd. For if a player 
with two dice can with equal chances throw an 
even and an odd number, it does not follow that 
he can with equal fortune throw an even number 
in each of three successive casts.
Cardano thus correctly calls his initial reasoning “most 

absurd,” and then gives the following correct reasoning:
Therefore, in comparisons where the probability 
is one–half, as of even faces with odd, we shall 
multiply the number of casts by itself and sub-
tract one from the product, and the proportion 
which the remainder bears to unity will be the 
proportion of the wagers to be staked. Thus, in 
2 successive casts we shall multiply 2 by itself, 
which will be 4; we shall subtract 1; the remainder 
is 3; therefore a player will rightly wager 3 against 
1; for if he is striving for odd and throws even, 
that is, if after an even he throws either even or 
odd, he is beaten, or if after an odd, an even. Thus 
he loses three times and wins once.
Cardano thus realizes that it is the probability, 

not the odds, that ought to be multiplied. However, 
in the very next sentence following his above correct 
reasoning, he makes a mistake again when consider-
ing three consecutive casts for an event with odds 1:1. 
Cardano wrongly states that the odds against the event 
happening in three casts is 1/(32 – 1)=1/8, instead of  
1/(23 – 1)=1/7. Nevertheless, further in the book, Car-
dano does give the correct general rule:

Thus, in the case of one die, let the ace and the 
deuce be favorable to us; we shall multiply 6, the 
number of faces, into itself: the result is 36; and 
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two multiplied into itself will be 4; therefore the 
odds are 4 to 32 , or, when inverted, 8 to 1.

If three throws are necessary, we shall multiply 3 
times; thus, 6 multiplied into itself and then again 
into itself gives 216; and 2 multiplied into itself 
and again into 2, gives 8; take away 8 from 216: 
the result will be 208; and so the odds are 208 
to 8, or 26 to 1. And if four throws are necessary, 
the numbers will be found by the same reason-
ing, as you see in the table; and if one of them 
be subtracted from the other, the odds are found 
to be 80 to 1.
In the above, Cardano has considered an event with 

probability 1/3, and correctly gives the odds against 
the event happening twice as (32 – 1)/1=8, happening 
thrice as (33 – 1)/1=26, and so on. Cardano thus finally 
reaches the following correct rule: if the odds in favor 
of an event happening in one trial of an experiment is 
r/(t–r) then in n independent and identical trials of 
the experiment, the odds against the event happening 
n times is (tn–rn)/rn.

Law of Large Numbers 
The law of large numbers is attributed to the Jacob 
Bernoulli (1654–1705) and states that, in n independent 
tosses of a coin with probability of heads p such that the 
total number of heads is Sn , the proportion of heads 
converges in probability to p as n becomes large. In other 
words, consider an experiment which consists of tossing 
a coin n times, yielding a sequence of heads and tails. 
Suppose the experiment is repeated a large number of 
times, resulting in a large number of sequences of heads 
and tails. Let us consider the proportion of heads for 
each sequence. Bernoulli’s law implies that, for a given 
large n, the fraction of sequences (or experiments) for 
which the proportions of heads is arbitrarily close to p 
is high, and increases with n. That is, the more tosses we 
perform for a given experiment, the greater the prob-
ability that the proportion of heads in the corresponding 
sequence will be very close to the true p. This fact is very 
useful in practice. For example, it gives us confidence in 
using the frequency interpretation of probability.

Bernoulli had every right to be proud of his law, 
which he first enunciated it in the fourth part of the Ars 
Conjectandi and which he called his “golden theorem”:

This is therefore the problem that I now wish 
to publish here, having considered it closely 
for a period of twenty years, and it is a problem 
of which the novelty as well as the high utility 
together with its grave difficulty exceed in value 
all the remaining chapters of my doctrine. Before 
I treat of this “Golden Theorem” I will show that 
a few objections, which certain learned men have 
raised against my propositions, are not valid. 
Bernoulli’s law was the first limit theorem in prob-

ability. It was also the first attempt to apply the calculus 
of probability outside the realm of games of chance. 
In the latter, the calculation of odds through classical 

(or mathematical) reasoning had been quite successful 
because the outcomes were equally likely. However, this 
was also a limitation of the classical method. Bernoulli’s 
law provided an empirical framework that enabled the 
estimation of probabilities even in the case of outcomes 
which were not equally likely. Probability was no longer 
only a mathematically abstract concept. Rather, now it 
was a quantity that could be estimated with increasing 
confidence as the sample size became larger. 

About 150 years before Bernoulli’s times, Cardano 
had anticipated the law of large numbers, although 
he never explicitly stated it. In Cardano: The Gambling 
Scholar, Ore has written:

It is clear ... that he [Cardano] is aware of the 
so-called law of large numbers in its most rudi-
mentary form. Cardano’s mathematics belongs to 
the period antedating the expression by means 
of formulas, so that he is not able to express the 
law explicitly in this way, but he uses it as fol-
lows: when the probability for an event is p then 
by a large number n of repetitions the number 
of times it will occur does not lie far from the 
value m = np.

Throwing of Three Dice
More than a century after Cardano’s times, the Grand 
Duke of Tuscany asked the renowned physicist and 
mathematician Galileo Galilei (1564–1642) the fol-
lowing question: “Suppose three dice are thrown and 
the three numbers obtained added. The total scores 
of nine, ten, eleven and twelve can all be obtained 
in six different combinations. Why then is a total 
score of ten or eleven more likely than a total score 
of nine or twelve?”

To solve this problem, consider Table 1, which 
shows each of the six possible combinations for the 
scores of nine to twelve. Also shown is the number of 
ways (i.e., permutations) in which each combination 
can occur.

For example, reading the first entry under the col-
umn 12, we have a 6–5–1. This means that, to get a 
total score of 12, one could get a 6, 5, 1 in any order. 
Next to the 6–5–1 is the number 6. This is the number 
of different orders in which one can obtain a 6, 5, 1. 
Hence we see that the scores of nine to twelve can all 
be obtained using six combinations for each. However, 
because different combinations can be realized in a 
different number of ways, the total number of ways 
for the scores 9, 10, 11 and 12 are 25, 27, 27, and 25 
respectively. Hence scores of ten or eleven are more 
likely than scores of nine or twelve.

The throwing of three dice was part of the game of 
passadieci, which involved adding up the three num-
bers and getting at least eleven points to win. Galileo 
gave the solution in his 1620 probability paper Sopra le 
Scoperte dei Dadi. In his paper, Galileo states:

But because the numbers in the combinations 
in three–dice throws are only 16, that is, 3.4.5, 
etc. up to 18, among which one must divide the 
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said 216 throws, it is necessary that to some of 
these numbers many throws must belong; and if 
we can find how many belong to each, we shall 
have prepared the way to find out what we want 
to know, and it will be enough to make such an 
investigation from 3 to 10, because what pertains 
to one of these numbers, will also pertain to that 
which is the one immediately greater.
However, unbeknownst to Galileo, the same prob-

lem had actually already been successfully solved by 
Cardano almost a century earlier. The problem appeared 
in Chapter 13 of Cardano’s Liber de Ludo Aleae. Con-
sider Figure 3 which shows Cardano’s solution to the 
problem of throwing three dice, as it appears in Chapter 
13 of the Liber de Ludo Aleae. Cardano writes:

In the case of two dice, the points 12 and 11 can 
be obtained respectively as (6,6) and as (6,5). The 
point 10 consists of (5,5) and of (6,4), but the 
latter can occur in two ways, so that the whole 
number of ways of obtaining 10 will be 1/12 of 
the circuit and 1/6 of equality. Again, in the case 
of 9, there are (5,4) and (6,3), so that it will be 
1/9 of the circuit and 2/9 of equality. The 8 point 
consists of (4,4), (3,5), and (6,2). All 5 possibili-
ties are thus about 1/7 of the circuit and 2/7 of 
equality. The point 7 consists of (6,1), (5,2), and 
(4,3). Therefore the number of ways of getting 7 
is 6 in all, 1/3 of equality and 1/6 of the circuit. 
The point 6 is like 8, 5 like 9, 4 like 10, 3 like 11, 
and 2 like 12.

Problem of Points
It is fairly common knowledge that the gambler Antoine 
Gombaud (1607–1684), better known as the Chevalier 
de Méré, had been winning consistently by betting even 
money that a six would come up at least once in four 
rolls with a single die. However, he had now been losing, 
when in 1654 he met his friend, the amateur mathema-
tician Pierre de Carcavi (1600–1684). This was almost 
a century after Cardano’s death. De Méré had thought 
the odds were favorable on betting that he could throw 
at least one sonnez (i.e. double–six) with twenty–four 
throws of a pair of dice. However, his own experiences 
indicated that twenty–five throws were required. Unable 
to resolve the issue, the two men consulted their mutual 
friend, the great mathematician, physicist, and phi-
losopher Blaise Pascal (1623–1662). Pascal himself had 
previously been interested in the games of chance. Pascal 
must have been intrigued by this problem and, through 
the intermediary of Carcavi, contacted the eminent 
mathematician, Pierre de Fermat (1601–1665), who 
was a lawyer in Toulouse. Pascal knew Fermat through 
the latter’s friendship with Pascal’s father, who had died 
three years earlier. The ensuing correspondence, albeit 
short, between Pascal and Fermat is widely believed to 
be the starting point of the systematic development of 
the theory of probability.

Cardano had also considered the Problem of Dice 
in Chapter 11 of his book, and had reached an incor-

Table 1. Combinations and Number of Ways Scores of 
Nine to Twelve Can Be Obtained When Three Dice Are 

Thrown

Score 12 11 10 9
6-5-1 6 6-4-1 6 6-3-1 6 6-2-1 6
6-4-2 6 6-3-2 6 6-2-2 3 5-3-1 6
6-3-3 3 5-5-1 3 5-4-1 6 5-2-2 3
5-5-2 3 5-4-2 6 5-3-2 6 4-4-1 3
5-4-3 6 5-3-3 3 4-4-2 3 4-3-2 6
4-4-4 1 4-4-3 3 4-3-3 3 3-3-3 1

Total No. 
of Ways 25 27 27 25

Figure 3. Cardano’s solution to the problem considered by Galileo, as it 
appears in Chapter 13 of the Liber de Ludo Aleae. The bottom left column 
on the right page has the two last rows reading 9, 12, 25 and 10, 11, 27. 
These correspond, respectively, to a total of 25 ways of obtaining a total of 
9 or 12 with three dice, and a total of 27 ways of obtaining a total of 10 or 
11 with three dice.



VOL. 25.4, 2012

18

rect answer of 18 throws of two dice for a probability 
of at least half for at least one double–six. Cardano 
reaches this answer by making use of an erroneous 
principle, which Ore calls a “reasoning on the mean” 
(ROTM). According to the ROTM, if an event has a 
probability p in one trial of an experiment, then in n 
trials the event will occur np times on average, which 
is then wrongly taken to represent the probability 
that the event will occur in n trials. In our case, we 
have p = 1/36 so that, with n = 18 throws, the event 
“at least a six” is wrongly taken to occur an average 
np = 18(1/36) = 1/2 of the time.

The Problem of Points was another problem de 
Méré asked Pascal in 1654 and was the question that 
really launched the theory of probability in the hands 
of Pascal and Fermat. It goes as follows: “Two players 
A and B play a fair game such that the player who wins 
a total of 6 rounds first wins a prize. Suppose the game 
unexpectedly stops when A has won a total of 5 rounds 
and B has won a total of 3 rounds. How should the prize 
be divided between A and B ?”

The problem had already been known hundreds 
of years before the times of these mathematicians. It 
had appeared in Italian manuscripts as early as 1380. 
However, it first came in print in Fra Luca Pacioli’s 
1494 Summa de Arithmetica, Geometrica, Proportioni, 
et Proportionalita. 

To solve the Problem of Points, we need determine 
how likely A and B are to win the prize if they had con-
tinued the game, based on the number of rounds they 
have already won. The relative probabilities of A and 
B winning thus determine the division of the prize. 
Player A is one round short, and player B three rounds 
short, of winning the prize. The maximum number of 
hypothetical remaining rounds is (1+3)–1=3, each of 
which could be equally won by A or B. The sample 
space for the game is S = {A1, B1A2, B1B2A3, B1B2B3}. 
Here, B1A2, for example, denotes the event that B 
would win the first remaining round and A would 
win the second (and then the game would have to 
stop since A is only one round short). However, the 
four sample points in S are not equally likely. Event A1 
occurs if any one of the following four equally likely 
events occurs: A1A2A3, A1A2A3 , A1B2A3 , and A1B2B3. 
Event B1A2 occurs if any one of the following two 

equally likely events occurs: B1A2A3 and B1A2B3. In 
terms of equally likely sample points, the sample space 
is thus S={A1A2A3, A1A2B3, A1B2A3, A1B2B3, B1A2A3, 
B1A2B3, B1B2A3, B1B2B3,. There are in all eight equally 
likely outcomes, only one of which (B1B2B3) results 
in B hypothetically winning the game. A thus has a 
probability 7/8 of winning. The prize should therefore 
be divided between A and B in the ratio 7:1. 

The above solution is essentially the one Fermat gave 
in his correspondence with Pascal. The latter solved the 
problem differently, using two alternative methods. The 
first involved recursive equations and the second the 
Arithmetic Triangle.

However, Cardano had also considered the Problem 
of Points in the Practica arithmetice. His major insight 
was that the division of stakes should depend on how 
many rounds each player had yet to win, not on how 
many rounds they had already won. Many mathema-
ticians had previously believed the prize should be 
divided in the same ratio as the total number of games 
the players had already won. Thus, in the Summa de 
Arithmetica, Pacioli gave the incorrect answer of 5:3 
for the division ratio.

However, in spite of Cardano’s major insight into 
the Problem of Points, he was unable to give the correct 
division ratio. In the Practica arithmetice, Cardano uses 
the concept of the “progression” of a number to solve 
the Problem of Points, where he defines progression(n) 
= 1+2+…+n. He then claims that, if players A and B 
are a and b rounds short of winning, respectively, then 
the division ratio between A and B should be in accor-
dance with the progressions of b and a, which gives 
b(b+1):a(a+1). In our case, a =1, b =3, giving an incorrect 
division ratio of 6:1. 

The Arithmetic Triangle 
Pascal was able to relate the Problem of Points to the 
Arithmetic Triangle. Consider players A and B who 
are a and b rounds short of winning a prize, so that the 
maximum number of remaining hypothetical rounds 
is a+b–1. Pascal correctly identifies the value of a+b–1 
with each row of the triangle, such that the correspond-
ing entries, counting from the left, give the number of 
ways A can win 0, 1, 2, …, rounds. Now player A wins if 
she wins any of the remaining a, a+1,…, a+b–1 rounds. 
Pascal shows that the number of ways this can happen 
is given by the sum of the first b entries in the arithme-
tic table for row a+b–1. Similarly, player B wins if she 
wins any of the remaining b, b+1,…, a+b–1 rounds. The 
number of ways this can happen is given by the sum of 
the last a entries in the arithmetic table for row a+b–1. 
Pascal is thus able to give the general division rule for 
a fair game between A and B from the entries of his 
Arithmetic Triangle:

(sum of the first b entries for row a+b–1):(sum of 
the last a entries for row a+b–1)

Although Pascal solves only the case when A 
and B were b–1 and b rounds short in his cor-
respondence with Fermat, he is able to prove the 

With one throw of two dice, the probability of a double-six 
is (1/6) x (1/6)=1/36, and the probability of a no double-
six is 35/36. In n throws of two dice, the probability of no 
double-sixes at all is (35/36)n. Thus the probability of at least 
one double-six in n throws of two dice is 1-(35/36)n. Solving 
1-(35/36)n >1/2, we obtain n > 24.6. Hence, we have 
more than an even chance of a double-six with 25 throws of 
two dice.

HOW MANY THROWS OF TWO DICE 
DO WE NEED FOR MORE THAN AN 
EVEN CHANCE OF AT LEAST ONE 
DOUBLE-SIX? 
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general division rule above in his 1665 Traité 
du Triangle Arithmétique. Applying this simple 
rule to our question in the problem, we have 
a=1, b =3, a+b–1=3, and a division of stakes of 
(1+3+3):1=7:1 between A and B, as required.
In the 1570 Opus novum de proportionibus, Cardano 

also made use of the Arithmetic Triangle well before 
Pascal. In a 1950 paper, the mathematical historian 
Boyer reports:

… in 1570 Cardan[o] published his Opus novum 
de proportionibus, and in this work the Pascal 
triangle appears in both forms and with vary-
ing applications. In connection with the prob-
lem of the determination of roots of numbers, 
Cardan[o] used the familiar earlier form, citing 
Stifel as the putative discoverer.
Furthermore, Cardano was also aware of what later 

came to be known as Pascal’s identity:

The Arithmetic Triangle was a major component in the 
development of the calculus of probabilities. This triangle has 
ones along its two outermost diagonals, and each inner entry 
is the sum of the two nearest top entries. 

Moreover, for a given row n, the ith entry counting from 

left is denoted by (n
i) and has a special property. It gives 

the number of ways of choosing i objects out of n identical 

objects. In the binomial expansion of (x+y)n, (n
i) is equal to 

the coefficient of xi and is thus called a binomial coefficient. 
The Arithmetic Triangle was known well before Pascal and is 
called Yang Hui’s Triangle in China in honor of the Chinese 
mathematician Yang Hui (1238–1298) who used it in 1261. 
Others have called it Halayudha’s Triangle since the Indian 
writer Halayudha used it in the 10th century. The triangle 
was first called Pascal’s triangle by Montmort in his Essay 
d’Analyse sur les Jeux de Hazard.

THE ARITHMETIC TRIANGLE 

where n and r are positive integers such that r ≤ n. More 
importantly, in his paper, Cardano showed that he was 
aware of the following recursive formula

Boyer writes:
Had Cardan[o] applied his rule to the expan-
sion of binomials, he would have anticipated the 
binomial theorem for positive integral powers.

The St. Petersburg’s Paradox
This problem has been undoubtedly one of the most 
discussed in the history of probability and statistics, 
and goes as follows: “A player plays a coin–tossing 
game in a casino. The casino agrees to pay the player 
1 dollar if heads appears on the initial throw, 2 dollars 
if head appears first on the second throw, and in gen-
eral 2n–1 dollars if heads first appears on the nth throw. 
How much should the player give the casino as an 
initial down–payment if the game is to be fair (i.e. the 
expected profit of the casino or player is zero)?”

To “solve” this problem, note that he player wins on 
the nth throw if all previous (n–1) throws are tails and 
the nth thrown is a head. This occurs with probability 
(1/2)n–1(1/2)=1/2n and the player is then paid 2n–1 
dollars by the casino. The casino is therefore expected 
to pay the player the amount [(1/2)×1] + [(1/22)×2] + 
[(1/23)×22] + ...=1/2 + 1/2 + 1/2 +... = ∞. Thus it seems 
that no matter how large an amount the player initially 
pays the casino, he or she will always emerge with a 
profit. Theoretically, this means that only if the player 
initially pays the casino an infinitely large sum will 
the game be fair. However, there is a problem in this 

“solution,” for although it seems to imply that the player 
is expected to be paid an infinite amount of money, in 
fact she will almost surely be paid much less than that. 
To see why, we can calculate how likely it is that she 
will win within the first seven tosses. The probabilities 
of winning within the first three, four, and five tosses 
can be shown to be, respectively, .875, .938, and .969. 
Thus it is very likely that the player will have won within 
the five tosses. Given that this actually occurs, the player 
will paid 24 = 16 dollars by the casino. So paying the 
casino 16 dollars would seem fair for all intents and 
purposes. And yet our solution appears to imply that 
the player should pay the casino an infinite amount to 
make the game fair. On one hand, the theory seems to 
predict the player is expected to emerge with a huge 
profit however large a sum he or she pays the casino. 
On the other hand, even paying the casino 1000 dollars 
seems unfair since most certainly the player will end up 
being paid at most 16 dollars.

One way of getting around this conundrum is to 
use the notion of mean utility, which was the approach 
taken by Daniel Bernoulli (1700–1782). Bernoulli 
suggested that, if a player has an initial fortune which 
changes by a small amount, then the corresponding 
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change in the player’s utility for that fortune should 
be inversely proportional to the player’s initial fortune. 
This means that, for a given change in the player’s for-
tune, the more money the player has the less will the 
change in utility be. Using the concept of mean utility, 
we can show that, if the player’s initial fortune is 10 
dollars, then he or she should pay an upfront amount 
of approximately 3 dollars. On the other hand if the 
player’s initial fortune is 1000 dollars, then approxi-
mately 6 dollars should be paid. These are much more 
reasonable upfront payments than that suggested in 
our solution. Note that this version of the St. Peters-
burg problem does not restrict the casino’s fortune, but 
instead conditions on the player’s initial fortune.

The St. Petersburg Problem was first proposed by 
Nicholas Bernoulli (1687–1759) in a letter to Pierre 
Rémond de Montmort (1678–1719) in 1713. It was 
published in Montmort’s second edition of the Essay 
d’Analyse sur les Jeux de Hazard:

Fourth Problem. A promises to give one ecu to B, 
if with an ordinary die he scores a six, two ecus 
if he scores a six on the second throw, three ecus 
if he scores this number on the third throw, four 

ecus if he gets it on the fourth throw, & so on. 
We ask what the expectation of B is. 

Fifth Problem. We ask the same thing if A prom-
ises B ecus according to the sequence 1, 2, 4, 8, 16, 
etc., or 1, 3, 9, 27, etc., or 1, 4, 9, 16, 25, etc., or 1, 8, 
27, 64, etc., instead of 1, 2, 3, 4, 5, etc. like before. 
It was then taken up again by Daniel Bernoulli (1700–

1782) and published in a similar form we showed above 
in the St. Petersburg Academy Proceedings in 1738. 
Almost every prominent mathematician of the time dis-
cussed the problem, which from then on became known 
as the St. Petersburg Paradox.

An even earlier version of the St. Petersburg Problem 
appears in Cardano’s Practice Arithmetice and is as follows: 

A rich and a poor man play for equal stakes. If the 
poor man wins, on the following day the stakes 
are doubled and the process continues; if the rich 
man wins once, the play is ended once and for all.
Cardano states that the rich man is at a great disad-

vantage in this game. Let’s see if that is the case. Suppose 
that the game is played by tossing a fair coin, the poor 
man’s initial stake is one unit, and the rich man’s initial 
capital is c units. Then the maximum number of possible 
games occurs when the rich man keeps on losing until 
he is ruined. Suppose this maximum is n. Then the total 
amount lost by the rich man in n games is 1 + 2 + 4 + ... 
+2n–1 = 2n–1 , where n is the largest integer such that 2n – 
1 ≤ c. Now, it can be shown that both the rich and poor 
men have the same expected profit of zero. However, the 
rich man’s can win the series if he wins on the mth toss, 
which happens with probability 2–m, so that his overall 
probability of winning is the sum (1/2)+(1/2)2+…+(1/2)n 

=1–2–n. On the other hand, the poor man’s overall prob-
ability of winning the series is 2–n. Thus, contrary to 
Cardano’s assertion, the rich man is ever more likely to 
ruin the poor man as the number of tosses increases.

Conclusion
Cardano touched on many problems and rules of 
probability that were later to take a prominent posi-
tion in the literature. However, he was unable to make 
any real “breakthrough.” This has more to do more 
with the fact a proper symbolic mathematical lan-
guage had not been developed in the 16th century 
than anything else. Nevertheless, once this was done, 
Cardano’s successors were able to more appropriately 
deal with his initial investigations. 
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Suppose a player has an initial fortune x0, and has a 
probability pj (for j= 1,…,K) of winning an amount aj, where 
�j pj = 1. If at any stage the player’s fortune changes from x to 
(x + dx), then Bernoulli suggested that the change in the 
player’s utility U for that fortune is dU xdxdU /∝dx/x. From, dU xdxdU /∝
dx/x we get U=klnx+C, where k and C are both constants. 
Bernoulli then denotes the mean utility of the player’s final 
fortune by 

Now, suppose the player has an initial fortune x0 and pays 
an initial amount  for the game. Then, for a fair game, 
Bernoulli sets the player’s mean utility for his or her final 
fortune to be zero, obtaining:

This equation can be solved for  when the value of x0 is 
specified. For example, if the player’s initial fortune is x0 = 
10 dollars, then he or she should pay an upfront amount 
of ≈3 dollars. On the other hand if x0 = 1000 dollars, 
then ≈ 6 dollars.

BERNOULLI’S CONCEPT OF MEAN 
UTILITY
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